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Auditory Processing across the Sleep-Wake Cycle:
Simultaneous EEG and fMRI Monitoring in Humans

movement (NREM) sleep, which represents 80% of the
total sleeping time (Carskadon and Dement, 1994).

Sensory stimulation during NREM sleep evokes the
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reflecting complex cognitive processes (Donchin et al.,

We combined fMRI and EEG recording to study the 1984; Giard et al., 1988), are sometimes present but
neurophysiological responses associated with audi- delayed during NREM sleep. For example, the P300, a
tory stimulation across the sleep-wake cycle. We late potential associated with attention and discrimina-
found that presentation of auditory stimuli produces tion, is often preserved during NREM sleep (Wesensten
bilateral activation in auditory cortex, thalamus, and and Badia, 1988; Brualla et al., 1998; Cote and Campbell,
caudate during both wakefulness and nonrapid eye 1999; Perrin et al., 1999). Thus, the auditory potentials
movement (NREM) sleep. However, the left parietal more affected are the ones generated at the thalamocor-
and, bilaterally, the prefrontal and cingulate cortices tical level. In support of this notion, electrophysiological
and the thalamus were less activated during NREM studies in cats showed specific decline in the firing rate
sleep compared to wakefulness. These areas may play of neurons in the parietal association cortex (Steriade
a role in the further processing of sensory informa- et al., 1978) and the thalamus (Steriade and Hobson,
tion required to achieve conscious perception during 1976) during NREM sleep. Hence, it is possible that
wakefulness. Finally, during NREM sleep, the left decreased efficiency in input processing in the thalamus
amygdala and the left prefrontal cortex were more and association cortices may be responsible for the lack
activated by stimuli having special affective signifi- of conscious perception during sleep. This possibility
cance than by neutral stimuli. These data suggests is consistent with data showing a relationship between
that the sleeping brain can process auditory stimuli conscious perception and activity in association corti-

ces in humans (Lumer et al., 1998; Kleinschmidt et al.,and detect meaningful events.
1999; Portas et al., 2000).

Although the electrophysiological studies described
Introduction above show that some aspects of sensory processing

are preserved during NREM sleep, they lack the spatial
The degree of cognitive activity taking place in a sleep- resolution to identify the neuroanatomical substrates
ing brain is a current matter of interest (e.g., Cote and underlying this process. In the present study, we used
Campbell, 1999; Perrin et al., 1999). Although it is gener- functional magnetic resonance imaging (fMRI) com-
ally accepted that sensory inputs are consciously per- bined with EEG to investigate “if” and “how” the brain
ceived only during wakefulness, sensory information responds to sensory processing across different levels
can be, under certain circumstances, integrated in the of consciousness. First, we tried to establish to what
sleeper’s mental activity (Burton et al., 1988). Since extent auditory stimuli presented during sleep are asso-
sleep occupies almost one-third of human life, it seems ciated with brain activity. We were also interested in
important to investigate the degree of sensory pro- comparing hemodynamic changes associated with au-
cessing achieved during this state. In this study, we inves- ditory processing in sleep and wakefulness. Second, we
tigate the effect of auditory stimuli during nonrapid eye considered whether, during NREM sleep, the brain may

differentially process stimuli having special affective sig-
nificance. To test this hypothesis, we presented two‖ To whom correspondence should be addressed: (e-mail: cportas@

fil.ion.ucl.ac.uk). types of auditory stimuli, matched for their intensity and
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Figure 1. Schematic of the Experimental Design

The figure shows the time-relation between functional measurements, EEG recording, presentation of auditory stimuli, and replay of scanner
noise.

duration but with different affective significance: pure middle temporal gyrus and orbitofrontal cortex bilater-
ally in response to the name in both wakefulness andtones (beep) and the subject’s own first name.
sleep (Figure 6; Table 1).

Finally, we looked for activations associated with theResults
interaction between stimulus type and state. That is,
we contrasted name- versus beep-related brain activityFigure 1 shows a schematic of the experimental design
during sleep with name- versus beep-related brain activ-(see Experimental Procedures for more details). During
ity during wakefulness. Because we were interested inthe course of the experiment, subjects were presented
those brain regions that responded more to the presen-with two types of auditory stimuli of equal length and
tation of the subject’s own name, compared to beep, inintensity, a pure tone (beep) and the subject’s own first
sleep than in wakefulness, we masked the interactionname (name). Hypnograms showed in all subjects an
with a contrast coding for the simple main effect of namealternation between wakefulness and sleep periods.
versus beep in sleep (see Experimental Procedures).NREM sleep will be referred to as “sleep.” Most subjects
This comparison showed increased activation in the leftfell asleep immediately after the start of the experiment
amygdala and left prefrontal cortex (BA 46) (Figure 7;and spent most of the sleeping time in stages II and III.
Table 1).An example of a subject’s polygraphic recordings is

shown in Figure 2.
The mean number of awakenings was 10 per subject Discussion

and the majority was due to the presentation of the
subject’s own name (Figure 3). The most important find- This is the first fMRI study to investigate auditory pro-

cessing as a function of the level of consciousness. Theing of this study was that the pattern of brain activation
associated with auditory stimulation was remarkably importance of understanding how sensory stimuli are

processed in a state of reduced consciousness goessimilar during wakefulness and sleep. In particular, pro-
cessing of the auditory stimuli (name or beep) produced beyond the boundary of sleep physiology. Such knowl-

edge would help us to comprehend how residual cogni-bilateral activation in auditory cortex (superior temporal
gyrus, BA 41/42), thalamus, and caudate in wakefulness tive activity operates during states of “unconscious-

ness” other than sleep (e.g., anesthesia, comatoseand sleep (Figure 4; Table 1).
However, when the stimuli-related brain activity dur- states, etc.).

The first significant result of this study is that theing sleep was compared to stimuli-related brain activity
during wakefulness, a decreased activation was found pattern of brain activation associated with auditory stim-

ulation was strikingly similar in wakefulness and sleep,in the left parietal cortex (BA 7) and bilaterally in the
prefrontal cortex (BA 47), thalamus, cingulate gyrus (BA23/ suggesting that sensory processing occurred in both

conditions. However, we found qualitative differences24), and peri-amygdala regions (Figure 5; Table 1).
Direct comparison between the two event types in brain activation associated with auditory processing

during sleep compared to wakefulness. The reduced(name versus beep) revealed higher activation of the
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Figure 3. Percentage of Awakenings in Relation to Stimuli Plus SD

The affective saliency of the stimuli was estimated as percentage
of awakenings in relation to the type of stimulation. The graph shows
the percentage of awakenings in relation to the type of auditory
stimulation. Name is significantly more arousing than beep (ANOVA
followed by post-hoc comparison p , 0.05).

et al., 1999). Furthermore, a selective decrease of activity
in association cortices (parietal and prefrontal regions)
during REM sleep in healthy volunteers has been re-
ported (Maquet et al., 1996). We note that REM sleep
is a state in which the brain is highly aroused and the
activity in the thalamocortical system is similar to wake-
fulness (Llinás and Ribary, 1993). However, sensory
awareness is rarely achieved (Burton et al., 1988) and
the threshold for awakening is as high during REM sleep
as in delta sleep (Rechtschaffen et al., 1966). It is con-
ceivable that the dampened activity in association re-
gions during REM sleep is sufficient to prevent aware-

Figure 2. Example of Polygraphic Recording in a Subject ness and contextualization of sensory stimuli despite
Note a activity in the EEG channels characteristic of quiet wake- the high degree of brain arousal. Despite the intrinsic
fulness (upper panel) in contrast with slow, high-amplitude activity difference between REM and NREM sleep (Llinás and
characteristic of sleep (lower panel). Also note the decrease in heart Pare, 1991), it seems that a similar decrease in associa-
frequency in wakefulness compared to sleep. Calibration bar used tion cortices activity may occur in the two states. Thisfor EEG, EOG, EMG channels corresponds to 50 mV, for the ECG

might explain the common perceptual impairment. Thechannel corresponds to 500 mV.
present findings argue in favor of this hypothesis.

Our second aim was to investigate if, during sleep,
the brain responds in a different fashion to differentregional activity during sleep, compared to wakefulness,

in the left parietal and, bilaterally, in the prefrontal cortex, stimuli as a function of their significance. Behavioral and
electrophysiological evidence support this possibility.thalamus, and cingulate gyrus (part of the limbic system)

suggests that these areas may be involved in the further For example, some auditory stimuli produce more awak-
enings than others regardless of their intensity; e.g.,processing and perceptual integration of sensory inputs

likely to occur during wakefulness only. Indeed, a role young mothers are woken up by their infants’ lightest
movements (Nishihara and Horiuchi, 1998). In addition,for frontal and parietal regions (Kleinschmidt et al., 1999;

Lumer et al., 1998; Portas et al., 2000) and the thalamus a waveform called “mismatch negativity” elicited by de-
viant tones in wakefulness is also present during sleep(Hugdahl et al., 1991; Portas et al., 2000) in conscious

perception has previously been proposed. (Nordby et al., 1996; Pratt et al., 1999). Similarly, other
electrophysiological studies suggested that certainRecent positron emission tomography (PET) studies

of vegetative patients showed that their primary auditory processes of attention and memory-related operations
involved in auditory processing remain operative duringcortex responds to auditory stimulation (Laureys et al.,

2000). However, a significant alteration in functional con- sleep (Bastuji et al., 1995; Nordby et al., 1996; Brualla
et al., 1998). Of particular interest is the recent study bynectivity between the auditory cortex and multimodal

(parietal cortex) and limbic areas was reported. The au- Perrin et al. (1999) reporting that, during REM and NREM
sleep, presentation of the subject’s own name elicited athors suggested that these “functional” disconnections

restrict cortical processing and prevent perceptual inte- cognitive response comparable to that occurring during
wakefulness as shown by enhancement of the P300gration in vegetative patients. In this respect, Laureys’s

study is entirely consistent with our observations. Resid- component. Such responses were not shown for pre-
sentation of other first names. Taking advantage of theual input processing in vegetative patients in relation to

other sensory modalities has also been shown (Owen higher spatial resolution of fMRI compared to event-
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Figure 4. Effect of Auditory Stimulation in Wakefulness and in Sleep

Brain activation associated with beep (upper panels) or name presentation (lower panels) in wakefulness (left panels) or sleep (right panels).
Note bilateral activation in the superior temporal gyrus and thalamus in both wakefulness and sleep.

related potentials, we were able to identify selective from the auditory thalamus and auditory cortex (Ro-
manski et al., 1993). Information from the lateral nucleusareas of brain activation associated with processing of

significant (subject’s own name) and neutral (beep) audi- flows to the central nucleus and from here to several
cortical and subcortical areas. We suggest that followingtory stimuli across the sleep-wake. Presentation of beep

or the subject’s own name induced a similar pattern of the detection of relevant emotional stimuli during sleep,
the amygdala may activate the dorsolateral prefrontalactivation in the auditory cortex, thalamus, and caudate

bilaterally. However, when name- was compared to cortex, inducing arousal and sustaining a basic level of
sensory awareness (Armony and LeDoux, 2000). Al-beep-related brain activity, higher activation was pres-

ent in the middle temporal gyrus and orbitofrontal cortex though the amygdala is not directly connected to the
dorsolateral prefrontal cortex, it projects to the medio-bilaterally both in wakefulness and sleep. This difference

is likely to reflect complex semantic processing (Binder dorsal thalamic nucleus, one of the major areas feeding
into the prefrontal cortex. The amygdala also projects toet al. 1997) essential for name processing only.

More importantly, when we specifically tested the ef- nonspecific systems involved in the regulation of cortical
arousal (Amaral et al., 1992).fect of name versus beep in sleep compared to wake-

fulness, we found higher activation in the left amygdala The prefrontal cortex would then determine the conse-
quences of the “alarm effect.” Such effect may progressand left prefrontal cortex. These responses to the pre-

sentation of subjects’ own names were unrelated to the to full awakening and acknowledgment of the input or
to sensory neglect. The role of the prefrontal cortex inphysical difference between the stimuli and only present

during sleep. Thus, the results suggest that when sub- “selection” is well established (Frith et al., 1991; Hyder
et al., 1997).jects were listening to their own name during sleep some

brain regions were selectively more responsive than in In summary, we have demonstrated that the sleeping
brain is able to process auditory stimuli. In addition, weany other condition. The evidence that the amygdala

may play a role in mediating the response to auditory postulate the existence of a functional network capable
of detecting and facilitating processing of emotionallystimuli with affective significance is not surprising. The

role of the amygdala in detection of stimuli with affective relevant inputs during sleep.
content is well established (e.g., LeDoux, 1996), and

Experimental Proceduresamygdala responses to behaviorally relevant stimuli can
occur without awareness (Morris et al., 1998; Whalen et

Subjects
al., 1998). The present study extends these findings to A total of 12 healthy volunteers (10 males and 2 female, age 23–34)
the unconscious state represented by sleep. The lateral participated in the study. They had negative history for neurological,

psychiatric disorders or sleep abnormalities. Three subjects werenucleus of the amygdala receives profuse projections
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Table 1. Coordinates of Maxima and Z Scores of Brain Activationsa

Brain Areas Left Hemisphere Right Hemisphere

Planes x y z Z Score x y z Z Score

Beep 2 rest during wakefulness
Sup. temporal gyrus 254 226 0 (5.40) 66 218 6 (4.55)
Thalamus 26 222 8 (6.58) 6 222 12 (6.58)
Caudate nucleus 216 224 14 (5.74) 22 230 12 (5.42)

Beep 2 rest during sleep
Sup. temporal gyrus 256 222 6 (5.48) 62 224 4 (4.42)
Thalamus 26 224 10 (.10) 6 222 10 (.10)
Caudate nucleus 18 224 14 (6.56) 216 226 12 (6.59)

Name 2 rest during wakefulness
Sup. temporal gyrus 262 222 2 (.10) 66 220 4 (.10)
Thalamus 210 212 12 (5.88) 16 210 10 (6.65)
Caudate nucleus — —

Name 2 rest during sleep
Sup. temporal gyrus 258 222 4 (7.77) 64 218 22 (6.95)
Thalamus 24 224 12 (.10) 6 224 4 (.10)
Caudate nucleus 222 224 24 (4.99) 22 222 24 (5.22)

Beep 1 name during wakefulness 2 beep 1 name during sleep
Frontal cortex 236 32 2 (3.37) 52 30 2 (3.81)
Parietal cortex 228 254 32 (3.97) —
Cingulate gyrus 216 228 36 (4.29) 14 228 32 (3.31)
Thalamus 214 220 8 (4.26) 14 22 4 (4.24)
Peri-amygdala 236 0 228 (4.36) 34 4 226 (3.41)

Name 2 beep during wakefulness
Middle temporal gyrus 258 234 24 (5.41) 54 222 28 (6.22)
Orbitofrontal cortex 246 24 24 (5.44) 48 30 26 (3.00)

Name 2 beep during sleep
Middle temporal gyrus 258 212 26 (5.61) 64 224 26 (7.31)
Orbitofrontal cortex 246 20 26 (3.54) 32 28 216 (3.82)

Name 2 beep during sleep vs name 2 beep during wake (1 inclusive masking)
Prefrontal crotex 236 40 36 (3.81) —
Amygdala 224 4 226 (3.77) —

a Coordinates are in millimeters according to Talairach and Tournoux (1988), based on spatial normalization to a template provided by the
Montreal Neurological Institute (Evans et al., 1994).

used in a pilot study to test the experimental procedure. Two more sponses compared to other stimuli (trains of beep) of the same
intensity and duration (see Results). A total number of 160–180subjects had to be excluded from the group analysis due to severe

movement artifacts present in the data acquired. Thus, results from “events” (prerecorded trains of stimuli or baseline) were presented
in random order during matching bursts of functional measurements7 subjects (5 males and 2 females) were used in the data analysis.

Subjects gave written informed consent and all procedures were (see section below). In the gaps between bursts of fMRI measure-
ments, the recorded scanner noise was replayed in order to produceapproved by the local hospital ethics committee.
a constant background noise through the duration of the experiment
(Figure 1).Experimental Protocol

To ensure that subjects would sleep in the uncomfortable and noisy
MRI environment, we increased sleep propensity by sleep depriving Functional Data Acquisition and Analysis

To detect brain activation associated with processing of auditorythe subjects for 24 hr prior to the experiment, under continuous
supervision. On the day of the experiment, subjects were prepared stimuli across the sleep-wake cycle, we used burst-mode fMRI (Jo-

sephs et al., 1999). This technique involves the acquisition of shortfor polygraphic recording and then placed inside the scanner (8:00
a.m.). To minimize movement artifacts due to sleep, the subject’s “bursts” of measurements (6 measurements per burst in this study).

In the gaps between bursts, it is possible to monitor behavior and/head was immobilized with special pads. During a 2 hr scanning
period (including wakefulness and sleep), subjects were presented or electrophysiological parameters (e.g., EEG recording). During a

2 hr experimental session, 160–180 bursts (matching the number ofbinaurally, using a headphone, with trains of auditory stimuli of two
types alternated with periods of silence (baseline condition). In the events) were acquired for each subject (corresponding to z1000

volumes). Each volume consisted of 34 slices (2 mm thickness).baseline condition, there was no auditory stimulation other than the
scanner noise (Figure 1). A pure tone (beep, 1400 Hz sine waves, With this procedure, each volume covered the whole brain (with the

exception of the lowest part of the cerebellum); the voxel size was500 ms duration, 80 db intensity) was used as neutral stimulus and
presentation of the subject’s own name (500 ms duration, 80 db 3 3 3 3 3 mm, and the acquisition time (TA) was 2.88 s. Each burst

had z17 s duration (same as the gaps) (Figure 1). Before proceedingintensity) was used as stimulus having special affective significance.
Previous studies have shown that a person’s own name is an intrinsi- to fMRI data analysis, all volumes were realigned, motion corrected,

normalized (Friston et al., 1995) to a standard template (Montrealcally meaningful stimulus (Brain, 1958; Oswald, 1960; McDonald et
al., 1975; Fischler et al., 1987; Voss and Harsh, 1998), and its saliency Neurological Institute; Evans et al., 1994), and smoothed using a 6

mm FWHM Gaussian kernel. Statistical inference was obtained us-stands out against presentation of other first names (Berlad and
Pratt, 1995; Perrin et al., 1999). In addition, the subject’s own name ing statistical parametric mapping (SPM) 99 (http://www.fil.ion.ucl.

ac.uk/spm/spm99.html). Data were analyzed by modeling the evokedoffers the same level of affective saliency across subjects. Finally,
when presented during sleep, it produces more awakening re- hemodynamic responses for the different stimuli as boxcars con-
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Figure 5. Differential Brain Activation in Relation to Auditory Stimulation in Wakefulness Compared to Sleep

The figure shows the brain areas more activated in wakefulness compared to sleep in relation to the same auditory stimulation: left posterior
parietal cortex, prefrontal and cingulate cortices, thalamus, and peri-amygdala region bilaterally.

volved with a synthetic hemodynamic function (hrf), in the context a group. We used a fixed effects model to estimate the main effect
of state (sleep or wakefulness) over each type of event (beep, name,of the general lineal model (Josephs et al., 1997). We defined six

event types: name, beep, and rest in sleep and wake. Differential baseline). We also looked at state by event interactions (e.g., audi-
tory-related brain activity during sleep was compared to auditory-effects were tested by applying appropriate linear contrasts to the

parameter estimates for the hrf regressors of each event, resulting related brain activity during wakefulness), as well as state by event-
type interactions (i.e., name- versus beep-related brain activity dur-in a t statistic for each voxel. These t statistics (transformed to Z

statistics) constitute a statistical parametric map. The correspond- ing sleep compared to name- versus beep-related brain activity
during wakefulness; for a detailed review of interaction analysis,ing p values were corrected for multiple comparisons across the

entire brain, in the context of Gaussian random field theory, except see Price and Friston, 1997). Because we were interested in whether
the sleeping brain responds differently to stimuli with higher af-where otherwise indicated.

Data were first analyzed individually for each subject and then as fective significance, we only looked at one side of the interaction

Figure 6. Differential Brain Activation for Name Compared to Beep Stimuli during Wakefulness and Sleep

Brain areas more activated in relation to name compared to beep presentation. The middle temporal gyrus and the orbitofrontal cortex is
bilaterally more activated in both wakefulness and sleep.
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Figure 7. Activation in the Left Amygdala and Left Prefrontal Cortex for Name Presentation Compared to Beep during Sleep

The figure shows that during sleep there is a higher activation in the left amygdala and left prefrontal cortex for name presentation compared
to beep.

name versus beep by sleep versus wake by masking the resulting would closely reflect the occurrence (or lack) of wakefulness during
the preceding burst of measurements.SPM with the contrast associated with the simple main effect of

name versus beep during sleep (p , 0.05 uncorrected). In other
words, in the latter interaction, we only considered those voxels Acknowledgments
that also showed a differential activation to name, compared to
beep, during sleep. Significance was accepted for p , 0.001 uncor- We thank Prof. R. Turner for helpful suggestions.
rected or p , 0.05 corrected for multiple comparisons (Friston et
al., 1994). Received July 31, 2000; revised September 27, 2000.
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